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This collection contains the proceed-
ings of the 21st European Conference on Composite Materials 
(ECCM21), held in Nantes, France, July 2-5, 2024. ECCM21 is the 
21st in a series of conferences organized every two years by 
the members of the European Society of Composite Materials 
(ESCM). As some of the papers in this collection show, this 
conference reaches far beyond the borders of Europe. 
 The ECCM21 conference was organized by the Nantes 
Université and the Ecole Centrale de Nantes, with the support 
of the Research Institute in Civil and Mechanical Engineering 
(GeM). 

Nantes, the birthplace of the novelist Jules 
Verne, is at the heart of this edition, as are the 
imagination and vision that accompany the 
development of composite materials. They are 
embodied in the work of numerous partici-
pants from the academic world, but also of the 
many industrialists who are making a major 
contribution to the development of composite 
materials. Industry is well represented, reflect-
ing the strong presence of composites in many 
application areas. 

With a total of 1,064 oral and poster presenta-
tions and over 1,300 participants, the 4-day 

event enabled fruitful exchanges on all aspects of compos-
ites. The topics that traditionally attracted the most contribu-
tions were fracture and damage, multiscale modeling, dura-
bility, aging, process modeling and simulation and additive 
manufacturing.

However, the issues of energy and environmental transition, 
and more generally the sustainability of composite solu-
tions, logically appear in this issue as important contextual 
elements guiding the work being carried out. This includes 
bio-sourced composites, material recycling and reuse of 
parts, the environmental impact of solutions, etc.

We appreciated the high level of research presented at the 
conference and the quality of the submissions, some of 
which are included in this collection. We hope that all those 
interested in the progress of European composites research 
in 2024 will find in this publication sources of inspiration and 
answers to their questions.
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specific topics:
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Abstract 
A novel generation of manufactured composite materials is under development which takes inspiration 
from the hierarchical architectures which characterise natural composite materials such as bone, wood, 
and shell. This report describes results from ongoing research within a wider programme of enquiry 
aimed at significantly improving the compressive performance of components formed from fibre 
reinforced composite materials through employment of such biomimetic systems. 
 
Automated lay-up techniques, and particularly the collaborative human / robotic potential offered by 
cobotic systems, have been identified as offering the potential benefits of highly efficient material 
deposition within a safe manufacturing environment. The novel processing method and tooling 
developed to manufacture a simple hierarchically structured composite laminate is outlined, along with 
current work aimed at developing processes for the creation of more complex hierarchical systems in 
the future.  
 
The last section of the report presents results attained from the compressive testing of a sample laminate 
manufactured using the processing methods described. The samples tested displayed an initial linear 
response to loading, however the ultimate compressive failure mode could not be determined due to 
movement of the samples. Potential refinements of the method are considered based on images 
generated during testing. 

 
 

1. Introduction 
The engineering science of advanced composite materials is defined by the desire to generate stronger, 
lighter, and more resilient materials for use in increasingly demanding technical applications. A 
principal design paradigm for the field has been the reinforcement of lightweight polymer matrices 
with higher strength and stiffness fibres, such as carbon (CFRP). Progress in the field has seen 
continual advances in the development of mechanical properties in such materials, particularly 
regarding tensile and toughness values. However, at the component level compressive properties for 
fibre-reinforced composites can be significantly lower than equivalent tensile values. In large part it is 
the microbuckling of inherently wavy fibres and shearing at the fibre-matrix interface within laminates 
which reduces load carrying potential [1, 2]. In consequence, to obviate such failure modes 
components are often manufactured with superfluous material, increasing costs, and reducing the 
possible benefits of this class of materials. 
 
NextCOMP is an EPSRC funded research programme currently being undertaken jointly by Imperial 
College London and the University of Bristol, aimed at significantly improving compressive 
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properties in fibre-based composites. This is being achieved through investigation of the fundamental 
determinants of compressive load carrying characteristics, and the development of novel materials to 
better resist such loads. Of particular interest is the integration of discrete structural elements into the 
hierarchical systems architectures seen in natural composite systems. Despite usually being formed of 
intrinsically weak constituent materials, composites such as bone, wood, and shell can exhibit high 
relative load carrying capacities. A key determinant of such behaviour is understood to be the 
complementary interaction of discrete and dissimilar systems of reinforcement at different length 
scales, acting to functionally distribute imposed loads through the whole of the structure [3–5] 
 
As highlighted by Fratzl, natural composites differ fundamentally from manufactured materials in two 
important ways [6]. Firstly, they develop as a functional cellular response to the environmental loading 
conditions present as they are grown, whilst the material engineer must anticipate applied structural 
loads in advance. This necessarily imparts graded interfacial material between genetically determined 
structural design elements, which are fundamental to the distribution of loads through the various 
distinct structural systems. It is this characteristic which allows the combination of intrinsically weak 
structural elements to form highly load resilient bulk materials. The second key difference is that due 
to the weak nature of the constituent materials, natural composite systems can accrete material with 
extremely low levels of energy expenditure. This is in stark contrast to manufactured materials, where 
the engineer has access to elements of much higher intrinsic strengths but with correspondingly higher 
embedded energy costs. Such fine molecular tuning of manufactured structures is usually not cost 
effective at commercial scales. However, for the biomimetic hierarchical composites under 
development, it highlights the necessity of ensuring accuracy and consistency in the deposition of the 
various structural elements to be integrated, to enhance as much as practical the effective load 
distribution through the component structure. 
 
Previous experience in the hand lay-up of hierarchical composites has highlighted the difficulty in 
ensuring such accuracy, so the use of automated lay-up techniques has become a focus of attention. 
Cobotics is a growing area of research within the field of automated manufacture of advanced 
composites. Historically the processing of materials such as fibre reinforced polymers has relied 
heavily on the knowledge, experience, and creativity of skilled technicians to hand lay-up laminates of 
the required geometries and material properties. The highly accurate and repeatable dynamic control 
offered by industrial robotics, which has allowed increased efficiency and production rates in a diverse 
variety of manufacturing settings, can often struggle with the fine dexterous motor skills and 
functional adaptability required in composite material manufacture [7]. It is hypothesised that given 
the increased adoption of composite materials within high-volume consumer products, processing 
methodologies which allow safe and effective, direct human & robot collaboration offer the potential 
to increase production accuracy and efficiency whilst simultaneously reducing the negative effects of 
repetitive motion and suboptimal manual handling often experienced by technicians.  
 
This paper reports on the ongoing investigation into the development of the manufacturing techniques 
and tooling required to generate a novel composite material featuring a hierarchical system of 
reinforcement. It then reports on the results generated testing the sample material to determine its 
compressive properties. 
 
 
2. Method 
2.1. Materials and design  
Initial investigations have focused on developing simple systems architectures integrating two pre-
manufactured CFRP structural elements with known material properties, Figure 1. illustrates the 
desired architecture. Cured CFRP pultruded rods are arranged in planar rows with a defined rod 
separation and two facing laminates of uncured fibre / epoxy prepreg are adhered to them. The fibre 
direction in the rods defines the system 0° direction. Initial consolidation is achieved through action of 
the cobot during deposition, full system consolidation occurs during curing within an autoclave at a 
pressure of 7 bar. 
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The pultruded rods selected were supplied by Hyperflight.co.uk and consist of cured continuous 
carbon fibre reinforced epoxy resin with diameter 0.8 mm. The fibre system is noted as Toray T300, 
but the specific epoxy matrix is unknown, so a prepreg system was chosen based on the resin glass 
transition temperature. The prepreg is a unidirectional thin ply material supplied by SK Chemicals, 
featuring Tairyfil TC33 fibres and a standard grade epoxy, K51. Each facing laminate consists of nine 
sheets of prepreg giving a total cured ply thickness of 0.27 mm per face. Experimentation identified 
this material allowed easier adhesion and forming to the underlying cured rods than thicker prepregs 
such as IM7 / 8552. Table 1. lists the material properties for the prepreg, previously collated by Tamas 
Rev [8]. Table 2. lists the available material properties for the pultruded rod component [9]. 
 
 

 
 

Figure 1. a) Rod / UD prepreg laminate, b) Rod spacing & face laminate thickness 
 
 

Table 1. TC33 / K51 Material Properties (adapted from Rev [8]) 
 

Fibre tensile modulus 230 GPa 
Fibre tensile strength 3.45 GPa 

Fibre failure strain 1.5 % 
Fibre density 1.8 g/cm3 

Filament diameter 7 μm 
Fibre areal weight 20 g/m2 

Resin density 1.2 g/cm3 
Resin weight fraction 43 % 
Fibre weight content 43 g/m2 
Fibre volume fraction 39 % 

 
 

Table 2. Pultruded rod properties (adapted from supplier data [9]) 
 

0.8 mm Pultruded Rod Specification 
Weight  0.72 g/m 

Structural Material T300   
Matrix Epoxy Resin  

Fibre volume fraction 60  % 
Young’s modulus 230 GPa 
Ultimate Tensile 

Strength 
1600 – 2300 MPa 

Fibre Density 1.4 – 1.8 g/cm3 

Resin glass transition 170 °C 
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2.2 Cobotic equipment & tooling 
The cobotic equipment used is the Dobot-CR5 system, Figure 2. This is a six-axis light commercial 
unit specifically designed for cooperative use with human operators due to its integrated collision 
detection capability. The system has a tool carrying capacity of 5 kg, with a 360° operational area of 1 
metre radius. Tool movement can be programmed using the simple Blockly graphical user interface 
which allows the robot to be taught a series of process steps as the operator moves the tool head in 3D 
space, saving positional coordinates and defining the translational motion required. Repeatability of 
tool movement is stated by the manufacturer as 0.03 mm. 
 
The initial processing method developed requires the operator to deposit precut rods (length = 300 
mm) on to a tooling board. The face of the board has channels machined into its top face, of a depth 
equal to the radius of the rods, and covering an area of 300 mm x 300 mm. The spacing between the 
channels is set at twice the required final rod spacing within the laminate. The cobot is programmed to 
move a silicone rolling wheel repeatedly across the tool face at a distance sufficient to impart a 
translational force on the rods whilst also compressing located rods into channels. The wheel is 
contained within a housing manufactured using 3D printing technology in polylactic acid (PLA).  
 
During operation, the operator is free to rectify misaligned rods as they occur whilst also preparing 
further materials. Once all the channels have been filled by rods, the operator can pause the roller 
movement and place the required number of precut prepreg sheets (300 mm x 300 mm) over the rod 
area. A second program is then initiated which moves the roller over the laminate promoting adhesion 
between the rods and prepreg, creating one half of the final laminate. Two such half laminates are then 
carefully laid one on top of the other with the rod sides facing each other. A third program is then used 
to consolidate both sides to create the final laminate. The release film covering the tool plate in Figure 
2.b, is to reduce unwanted adhesion between the tool and the laminate once the prepreg plys are 
introduced. The samples described in the testing section below were processed using this method.
  

Figure 2. a) Dobot CR5 unit, b) Silicone roller in PLA housing, moving rods across tooling,  
c) Finished laminate section, d) Laminate sample adhered to four-point bending test cradle 

 
 

During the manufacture of the sample laminates described above a qualitative assessment of the 
manufacturing process highlighted the potential for damage to occur to the rods during the rolling phase. 
Consequently, alternative methods for accurate and repeatable deposition of rods on to the tool surface 
are in development. A rod placement system has been designed which combines a rod carrying unit and 
optically controlled dispensing mechanism. A prototype hopper was designed in Autodesk and printed 
in PLA, Figures 3a & b. The optical control system makes use of an ITR-9608 phototransistor reflective 
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interrupter sensor controlled by an Arduino R3 board. The optical sensor is affixed to the hopper and a 
digital on/off signal is triggered as the reflected IR beam is interrupted by a PLA comb, with teeth printed 
at spacings matching the tool channel spacings, Figures 3c & d. The comb is to be fixed to the tool 
surface and will activate the sensor as the hopper moves. The signal is used to control an electromagnetic 
push-pull solenoid, which moves a plate with a hole sufficient to allow one rod at a time to be deposited. 
The digital signal can also be used to control the progress of the cobotic programme and thus tune the 
hopper’s movement across the tool in step with the rod deposition speed, minimising further potential 
rod misalignment and increasing process efficiency. 
 

 
 

Figure 3. a) Prototype pultruded rod hopper & b) Optical sensing system 
 

  
A supplementary refinement of the initial method is utilising 3D polymer printing to generate the tooling 
surface itself. The channels in the tool are required to have a diametric tolerance that allows rod location 
without unwanted movement during further consolidation steps. The machined channels in the tooling 
block pictured are suitable only for rods of around 0.8 mm. A next step in creating more complex 
hierarchical systems is to integrate further component elements such as fibre over-braiding covering the 
rods and more formable materials such as discontinuous fibre prepreg to enhance component interfacial 
adhesion and load distribution. The introduction of such elements will require tooling with channels of 
different diameters and spacings, and prototypes can be more quickly and cheaply designed and 
manufactured using polymeric materials.  
 
 
2.3 Testing method 
A novel four-point bending test developed within the NextCOMP group was used to characterise the 
sample laminate created using the initial processing method [10, 11]. This test has a proven advantage 
over comparable compressive protocols in that it requires minimal material to be generated per 
sample. The test apparatus consists of a cradle manufactured from polymethylmethacrylate (PMMA) 
in the form of a beam. Samples are adhered within channels machined on the top surface using the 
epoxy adhesive Araldite A-2021. The cradle is then subjected to compressive loading within a 
universal test unit utilising a 25 kN load cell with displacement of 0.5mm / min. Strain data are 
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captured through use of Digital Image Correlation (DIC) imaging of the sample within the central 
gauge section, Figure 4. 
 

  
 

Figure 4. a) PMMA cradle dimensions, b) Testing and DIC set up 
 
 
Samples were cut from the cured laminate, Figure 2c. Sample length was 150 mm and average 
thickness was 0.85 mm. The channel machined in the top surface of the cradle has a width of 5 mm, so 
samples were cut to contain 5 rods resulting in nominal widths just below 5 mm, this was to allow the 
adhesive to penetrate between the sample edges and cradle, Figure 2d. 
 
 
3.  Results 

 
Figure 5. Chart of strain vs load for samples evaluated by four-point bending. 
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The test data generated for four samples indicated a linear strain response to loading until -14 kN. The 
mean compressive strain value at -12.5 kN is 0.75 %, with a standard deviation of 0.07. Samples 3 and 
4 highlight most clearly the non-linear increase and divergence in measured strain values for the 
samples once beyond -13 kN. Samples 2 and 3 display increasing noise in the data as the loading of 
the system increased to the load cell limit. An inspection of the DIC images for sample 3 highlights 
the cause of the breakdown in linear response for the measured strain rate of the samples at a load of -
13.5 kN. Images a) and b) in Figure 6 relate to the points a & b indicated on Figure 5. 
 

 
 

Figure 6. a) Sample 3 at -13.5 kN (188 secs), b) sample 3 at -15.7 kN (207 secs) 
 
 
Image b) indicates that the adhesive bond between the sample and the PMMA cradle has begun to fail, 
allowing the sample to begin moving within its channel on the top surface of the cradle. The adhesive 
layer on the sample top surface, outside the gauge section, remains intact and functions as a sleeve 
around the sample inhibiting out of plane bending but allowing lateral movement within the channel, 
the y-direction in the above image. System loading past this point is not increasing the compressive 
strain within the sample and none of the samples tested reached the point where damage of the sample 
was visible. The high strain values noted as the loading increased past the point of debonding are a 
function of the DIC data capture method and are a measure of the intact paintworks’ response to the 
applied compressive force. Consequently, whilst the samples tested indicate that this composite system 
can withstand at least -13 kN compressive load, full characterisation of the failure mode is still 
required. The failure of sample adhesion for this material mirrors previous issues encountered by the 
authors when testing highly aligned discontinuous fibre composite samples of the same geometry and 
resin epoxy system [11]. Future testing will focus on samples manufactured from alternative epoxy 
systems to attempt to control for this variable. Likewise, a further refinement under development is the 
control of sample movement by means of sample tabbing and the use of a clamping mechanism 
attached to the cradle. 
 
 
4. Conclusions 
Cobotic technology has been utilised for the manufacture of a two-component hierarchical composite 
with the aim of increasing accuracy, repeatability and efficiency in material deposition when compared 
with hand lay-up methods. Given the anticipated importance of such accuracy in determining load 
distribution within biomimetic hierarchical materials, cobotic methods promise to be a preferable 
manufacturing method as the complexity of the composite systems being developed increases. Potential 
refinements of the initial manufacturing method have been identified in which 3D polymer prototyping 
and digital sensing control are utilised to increase further the process efficiency whilst minimising 
unwanted component deterioration. A simple hierarchical composite laminate has been manufactured 
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using cobotic methods and tested to generate compressive property characteristics. Samples of the 
material were seen to display an average compressive strain value of 0.75 % at –12.5 kN. Further 
refinement of the testing method is in development to allow a more complete characterisation. 
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